73 research outputs found

    Time-Space Transformers for Video Panoptic Segmentation

    Full text link
    We propose a novel solution for the task of video panoptic segmentation, that simultaneously predicts pixel-level semantic and instance segmentation and generates clip-level instance tracks. Our network, named VPS-Transformer, with a hybrid architecture based on the state-of-the-art panoptic segmentation network Panoptic-DeepLab, combines a convolutional architecture for single-frame panoptic segmentation and a novel video module based on an instantiation of the pure Transformer block. The Transformer, equipped with attention mechanisms, models spatio-temporal relations between backbone output features of current and past frames for more accurate and consistent panoptic estimates. As the pure Transformer block introduces large computation overhead when processing high resolution images, we propose a few design changes for a more efficient compute. We study how to aggregate information more effectively over the space-time volume and we compare several variants of the Transformer block with different attention schemes. Extensive experiments on the Cityscapes-VPS dataset demonstrate that our best model improves the temporal consistency and video panoptic quality by a margin of 2.2%, with little extra computation

    Deep Learning Techniques for Liver Tumor Recognition in Ultrasound Images

    Get PDF
    Cancer is one of the most severe diseases nowadays. Thus, tumor detection in a non-invasive and accurate manner is a challenging subject. Among these tumors, liver cancer is one of the most dangerous, being very common. Hepatocellular Carcinoma (HCC) is the most frequent malignant liver tumor. The golden standard for diagnosing HCC is mainly the biopsy, however invasive and risky, leading to infections, respectively to the spreading of the tumor through the body. We conceive computerized techniques for abdominal tumor recognition within medical images. Formerly, traditional, texture-based methods were involved for this purpose. Both classical texture analysis methods, as well as advanced, original texture analysis techniques, based on superior order statistics, were involved. The superior order Gray Level Cooccurrence Matrix (GLCM), as well as the Textural Microstructure Cooccurrence Matrices (TMCM) were employed and assessed. Recently, deep learning techniques based on Convolutional Neural Networks (CNN), their fusions with the conventional techniques, as well as their combinations among themselves, were assessed in the approached field. We present the most relevant aspects of this study in the current paper

    A Sensor for Urban Driving Assistance Systems Based on Dense Stereovision

    Get PDF
    Advanced driving assistance systems (ADAS) form a complex multidisciplinary research field, aimed at improving traffic efficiency and safety. A realistic analysis of the requirements and of the possibilities of the traffic environment leads to the establishment of several goals for traffic assistance, to be implemented in the near future (ADASE, INVENT

    Abdominal Tumor Characterization and Recognition Using Superior-Order Cooccurrence Matrices, Based on Ultrasound Images

    Get PDF
    The noninvasive diagnosis of the malignant tumors is an important issue in research nowadays. Our purpose is to elaborate computerized, texture-based methods for performing computer-aided characterization and automatic diagnosis of these tumors, using only the information from ultrasound images. In this paper, we considered some of the most frequent abdominal malignant tumors: the hepatocellular carcinoma and the colonic tumors. We compared these structures with the benign tumors and with other visually similar diseases. Besides the textural features that proved in our previous research to be useful in the characterization and recognition of the malignant tumors, we improved our method by using the grey level cooccurrence matrix and the edge orientation cooccurrence matrix of superior order. As resulted from our experiments, the new textural features increased the malignant tumor classification performance, also revealing visual and physical properties of these structures that emphasized the complex, chaotic structure of the corresponding tissue

    Can Software Routers Scale?

    Get PDF
    Software routers can lead us from a network of special-purpose hardware routers to one of general-purpose extensible infrastructure--if, that is, they can scale to high speeds. We identify the challenges in achieving this scalability and propose a solution: a cluster-based router architecture that uses an interconnect of commodity server platforms to build software routers that are both incrementally scalable and fully programmable

    Semi-supervised segmentation of ultrasound images based on patch representation and continuous min cut.

    Get PDF
    Ultrasound segmentation is a challenging problem due to the inherent speckle and some artifacts like shadows, attenuation and signal dropout. Existing methods need to include strong priors like shape priors or analytical intensity models to succeed in the segmentation. However, such priors tend to limit these methods to a specific target or imaging settings, and they are not always applicable to pathological cases. This work introduces a semi-supervised segmentation framework for ultrasound imaging that alleviates the limitation of fully automatic segmentation, that is, it is applicable to any kind of target and imaging settings. Our methodology uses a graph of image patches to represent the ultrasound image and user-assisted initialization with labels, which acts as soft priors. The segmentation problem is formulated as a continuous minimum cut problem and solved with an efficient optimization algorithm. We validate our segmentation framework on clinical ultrasound imaging (prostate, fetus, and tumors of the liver and eye). We obtain high similarity agreement with the ground truth provided by medical expert delineations in all applications (94% DICE values in average) and the proposed algorithm performs favorably with the literature
    corecore